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ABSTRACT

Combining contextual information (i.e., side information) of items
beyond IDs has become an important way to improve the perfor-
mance in recommender systems. Existing self-attention-based side
information fusion methods can be categorized into early, late, and
hybrid fusion. In practice, naive early fusion may interfere with
the representation of IDs, resulting in negative effects, while late
fusion misses effective interactions between IDs and side informa-
tion. Some hybrid methods have been proposed to address these
issues, but they only utilize side information in calculating atten-
tion scores, which may lead to information loss. To harness the
full potential of side information without noisy interference, we
propose an Aligned Side Information Fusion (ASIF) method for se-
quential recommendation, consisting of two parts: Fused Attention
with Untied Positions and Representation Alignment. Specifically,
we first decouple the positions to exclude the noisy interference
in the attention scores. Secondly, we adopt the contrastive objec-
tive to maintain the semantic consistency between IDs and side
information and then employ orthogonal decomposition to extract
the homogeneous parts. By aligning the representations and fusing
them together, ASIF makes full use of the side information without
interfering with IDs. Offline experimental results on four datasets
demonstrate the superiority of ASIF. Additionally, we successfully
deployed the model in Alipay’s advertising system and achieved
1.09% and 1.86% improvements on clicks and Cost Per Mille (CPM).
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1 INTRODUCTION

Sequential recommendation plays an important role in industrial
scenarios such as e-commerce, advertising, and search systems, and
its main goal is to model the user’s historical behavior to predict
the next item that may be of interest to the user. Among various
solutions [6, 16], the attention-based models [10, 15, 20, 21] are
gradually becoming the mainstream due to excellent performance.

Early self-attention-based models like BERT4Rec [15] and SAS-
Rec [7] only consider item IDs, lacking the ability to capture item
attributes beyond IDs. This limitation becomes apparent when IDs
change frequently. For example, in a typical recommendation sce-
nario on the Alipay membership page, users are shown items that
can be redeemed using points and money. The product pool is fre-
quently updated with advertising programs, causing rapid changes
in item IDs. Attributes such as categories and brands offer a more
stable representation of a user’s long-term preferences. Thus, we
aim to incorporate side information into the recommendation model
to boost performance.

Based on the varying fusion locations, the existing self-attention-
based side information fusion methods can be categorized into three
types: early, late, and hybrid fusion. The early fusion fuses IDs with
side information together before feeding them into the attention
block. In contrast, the late fusion applies separated self-attention
blocks on item-level and feature-level sequences and fuses them un-
til the final stage. It has been pointed that the early fusion may not
always improve performance but instead impair the representation


https://doi.org/10.1145/3589335.3648308
https://doi.org/10.1145/3589335.3648308
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589335.3648308&domain=pdf&date_stamp=2024-05-13
饮尽风尘不谈过往
Highlight

饮尽风尘不谈过往
Highlight


WWW ’24 Companion, May 13-17, 2024, Singapore, Singapore

-0.4
-0.2

-0.0

ID-to-Attribute ID-to-Position Attribute-to-Position

Figure 1: Visualization of attention scores in SASRecr on
Yelp dataset.
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Figure 2: Visualization of information invasion.

of the IDs, causing a phenomenon known as information inva-
sion [11]. The late fusion, on the other hand, lacks the interaction
between IDs and side information and losses some prior informa-
tion. Consequently, some hybrid-fusion methods have emerged
recently. They avoid information invasion by incorporating side
information in attention score calculation and explore interesting
structures for attention correlations.

Despite the remarkable improvements, these approaches still
suffer from two limitations: (1) Correlations between IDs and at-
tributes can vary, with some being strong and others being weak,
making it difficult to eliminate interference and learn meaningful
correlations effectively. (2) Methods that completely exclude side
information from the final representation to prevent information
invasion may inadvertently discard crucial information within the
side information itself.

In this work, we try to enhance the utilization of side information
by mitigating noise interference. Inspired by [8], we expand the
fusion form of attention scores of early-fusion method SASRecp.
As shown in Fig. 1, IDs have a strong relationship with attributes,
while the correlations between position encoding and others are
relatively weak. This indicates the common way to fuse position
as ordinary side information may potentially introduce noise into
the attention scores. We also examine the representation spaces of
IDs and side information in SASRecr on the Yelp dataset to pro-
vide an explanation for information invasion. From a macroscopic
perspective, we can observe a significant dissimilarity between the
two distributions (see Fig. 2(a)), indicating that the representation
space after fusion will deviate considerably from the original ID
space. From a microscopic perspective, by projecting both the ID
and side information embeddings onto a coordinate system, we
uncover that if the directions of the two are opposite on certain
axes, these segments of vectors may cancel each other out, leading
to a loss of information (see Fig. 2(b)).
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To address the above issues, we propose a novel method called
Aligned Side Information Fusion (ASIF). First, we introduce Fused
Attention with Untied Positions, which separates the ID-attributes
from the position encoding during attention score calculation, elim-
inating noise interference and preserving the strong correlation.
Second, we propose Representation Alignment, consisting of two
steps: Representation Space Alignment (RSA) and Homogeneous
Information Extraction (HIE). The RSA approach employs a con-
trastive objective for paired ID and attribute at the interaction
granularity within the sequence to ensure their semantic consis-
tency. Although this operation brings the two distributions closer
together, it still can not avoid the existence of heterogeneous parts.
Therefore, HIE performs orthogonal decomposition on IDs and
side information to extract the homogeneous parts, thus avoiding
information invasion. In summary, our main contributions can be
summarized as follows:

e We meticulously design the ASIF framework, based on Fused
Attention With Untied Position and Representation Align-
ment, to enhance the recommendation performance by lever-
aging side information.

In terms of Representation Alignment, we propose RSA and
HIE. By employing contrastive loss and orthogonal decom-
position, we align the representation space of IDs and side
information in both macroscopic and microscopic aspects,
effectively preventing the problem of information invasion.
o Offline and online experiments demonstrate the effectiveness

of our proposed method.

2 RELATED WORKS
2.1 Sequential Recommendation

Sequential recommendation aims to predict the next item that is
most likely to be interacted with based on the user’s historical
behaviors. With the development of deep learning techniques re-
cent years, many neural network based methods such as Convolu-
tional Neural Networks (CNNs) [16, 19], Recurrent Neural Networks
(RNN5s) [13], Graph Neural Networks (GNNs) [3] and attention-
based models start to emerge. Among them, the self-attention-based
methods have made significant progress. SASRec [7] introduces
self-attention into the SR model to capture long-range dependen-
cies . BERT4Rec [15] adopts the Cloze objective and improves the
performance by bidirectional self-attention mechanism. Recent SR
methods also use contrastive learning to augment the data, includ-
ing CL4SRec [17] and DuoRec [12]. These works utilize only item
IDs, ignoring other attributes associated with the item, which may
potentially help to extract comprehensive sequence patterns.

2.2 Side Information Fusion for Sequential
Recommendation

Instead of using item IDs only as the above solutions, the side
information, such as other item attributes and ratings, is taken into
consideration to capture meaningful supervision signals. S*Rec [24]
notices the important information contained in the attributes and
devises four auxiliary self-supervised tasks to learn the intrinsic
relationship. Besides utilizing side information in auxiliary tasks,
the end-to-end fusion approaches are beginning to be explored.
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Figure 3: Single layer structure comparison of existing self-attention-based side information fusion approaches: SASRecr is
early fusion, FDSA is late fusion, while NOVA, DIF-SR and ASIF is hybrid fusion.

Following the classification system of multi-modal fusion [1,
2], we categorize the self-attention-based side information fusion
methods into three types: early, late, and hybrid fusion. In early
fusion, IDs and side information are combined at the shallow layers
of the model, which are then fed into the network and generate
outputs. For example, SASRecF [24] combines ID and attributes and
feeds them into the self-attention block as input (see Fig. 3(a)). In late
fusion, the networks of ID and side information are independent,
and fusion takes place just before the predict layer. FDSA [22] is the
late-fusion method, which applies separated self-attention blocks
on item-level and feature-level sequences and concatenates their
hidden states until the final stage (see Fig. 3(b)).

Both early and late fusion have their own limitations. The former
cannot exclude noisy interference and may result in information
invasion, while the latter lacks effective interaction between IDs
and attributes. Hybrid fusion lies between them, allowing IDs and
side information to interact in the middle layer. NOVA [11] first
defines the information invasion problem caused by naive early
fusion and proposes only to incorporate attributes in the calculation
of attention scores to mitigate it (see Fig. 3(c)). However, it regards
the position as an ordinary attribute, introducing noise into mixed
attention. Furthermore, DIF-SR [18] decouples the attention scores
for IDs and side information, allowing higher-rank attention matri-
ces and flexible gradients (see Fig. 3(d)). Unfortunately, it abandons
the implicit cross-relationships between IDs and attributes. Both
methods utilize side information only in the attention scores, com-
pletely discarding it in the value matrices, which may result in a
loss of information. Our work aims to fill these gaps, reducing noisy
interference while enhancing the utilization of side information.

3 METHODOLOGY

The overall framework of ASIF is shown in Fig. 4, and the details
will be introduced next.

3.1 Problem Formulation

In sequential recommendation with side information, let U, V,
X and Aj; denote the sets of users, items, item IDs and the j-th

type of attributes, respectively. Let S, = [Vl(ll),vl(lz), e ,Vl(ln>]
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denotes the historical sequence of interactions in chronological
order for user u € U, where vl(f) € V is the t-th item in the
user interaction sequence and n is the maximum length of the
sequence. Suppose we have m types of side information, then

v,(f) = {x,(j) gtz,agtu), .- ,ag,i)u}, where x,(f) € X is the item ID

of the ¢-th interaction, and a§2 € Aj represents the j-th type of

,a

the attributes of the ¢-th interaction. Given the interaction history
Su, the goal of sequential recommendation is to predict the next
item that the user u may be interested in. It can be formalized
as modeling the probability over all candidate items for user u:

P = v | Sy).

3.2 Fused Attention with Untied Positions
For attention-based models, the naive way to incorporate side infor-
mation is to fuse it with IDs and input into the attention block (see
Fig. 3(a)). NOVA follows this structure but excludes side information
from the value matrix (see Fig. 3(c)), while DIF-SR advises apply-
ing decoupled attention calculation of various side information
and IDs representations (see Fig. 3(d)), ensuring flexible gradients.
However, according to Fig.1, IDs have a strong relationship with
attributes, but position encoding has a weak relationship with IDs
and attributes, which may not be suitable to be fused with oth-
ers. Therefore, we propose the Fused Attention (FA) with Untied
Positions (UP) (see Fig. 3(e)).
Let X and A represent the embedding matrices of item IDs and
attributes, we first fuse them and compute the correlation matrix as
Cxa =F (X A)Wg W[ F(X,A)T, (1)
where Wy 1 € R W, ; € R¥9. F denotes the fusion func-
tion, e.g., Fsum (X, A) = X + Z;”zl A ;. Next, we compute the corre-
lation matrix of the position encoding as
Cp = PWy oW ,PT, @
where P denotes the absolute position embedding matrix, W2 €
R9%dr and Wi, € RA%dn
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Figure 4: An overview of ASIF. The model is stacked with the Fused Attention with Untied Positions block, which decouples
the computation of position and focuses on effective interaction between IDs and attributes. Through the Representation Space
Alignment (RSA) and Homogeneous Information Extraction (HIE), item IDs and attributes’ representations are aligned and the

homogeneous parts are accurately captured.

Then, we fuse the two correlation matrices and obtain the final
attention formula as follows:

hx = FusedAttention(X, Ay, -+ ,Am, P)

CXA + CP
Vdp
where Wy 1 € RYxd, hyx denotes the hidden state of the item IDs.
Finally, we consider the side information important enough to be

fully learned, so we also pass and update them between different
Transformer layers as follows:

ha = FusedAttention(X, Ay, -+, Am)

va,l,

= Softmax ( 3)

C
= Softmax [ 24 F (X, AWy 2, 4)
dp
. Cp
hp = FusedAttention(P) = Softmax _d PW,3, (5)
h

where Wy, € RAxd, Wys € R9%d and hy and hp denote the
hidden states of the attributes and the positions, respectively.

3.3 Representation Alignment

From macroscopic and microscopic perspectives, the occurrence
of invasion phenomenon may be due to excessive distribution de-
viation and vector offset, respectively. To solve this, we propose
Representation Space Alignment (RSA) and Homogeneous Infor-
mation Extraction (HIE) to align the representations of IDs and
attributes. The goal of the former is to narrow the representation
space of both item IDs and attributes to improve the semantic con-
sistency at the interaction granularity (see Fig. 5(a)). The latter
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extracts the information in the attributes that is homogeneous with
the item IDs and fuses it into the IDs representation (see Fig. 5(b)).

3.3.1 Representation Space Alignment (RSA). Taking inspiration
from CLIP’s alignment operation [14], we leverage a contrastive loss
to align the embedding spaces of item IDs and attributes, intending
to bring the two distributions closer (see Fig. 5(a)). However, unlike
CLIP, our alignment occurs at the interaction granularity within a
sequence rather than at the sample granularity. Specifically, X and
A represent the embedding matrices of item IDs and attributes:

<«

<@
X =

2D
a(2)
(6)
x(n) a(n)
where x(*),a(*) € R1%4 denote the embeddings of the item ID and
the attribute of the ¢-th interaction in the sequence, and X, A €

R™ 4 Next, we calculate the cosine similarity between the two
embeddings to get the final matching scores as follows:

x| a/aM

_ [x@x@q o [a@/1a@)
X= . . A= . , 7)

X" /x| a® /a™ |
Yx = Softmax (ﬁT / T), Ya = Softmax (KXT / T) , (8)

where Softmax(-) is executed for each row of the similarity matrix
and 7 denotes the learnable temperature coefficient. Finally, we
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Figure 5: Two steps of Representation Alignment.

calculate the contrastive loss in the following form:
1 X . —~ . —~
Leo :_ﬁ;Z(YlologY;( +Y'olog¥h), O

where © is the element-wise product, N is the sample size, and Y’
is the ground truth of the i-th sample, which is an identity matrix
Y! =1, = diag(1,1,- - - , 1), meaning that only the paired item IDs
and attributes are positive examples.

3.3.2  Homogeneous Information Extraction (HIE). The space align-
ment brings the two distributions closer, but still cannot avoid the
existence of the heterogeneous part. Therefore, we propose per-
forming orthogonal decomposition on each layer’s hidden states to
extract the homogeneous parts (see Fig. 5(b)).

Intuitively, if an attribute’s representation is in the same direc-
tion as ID’s, it should be maximally preserved. Otherwise, there
may be a conflict, and it should be discarded. Thus we need an
r-dim orthogonal coordinate system as the comparison granularity,
which needs to fully accommodate all the IDs’ representations in a
user’s interaction sequence. Specifically, we first perform a QR de-
composition of the IDs’ hidden state: hx! = OR, where Q € Réxn
is an orthogonal matrix, and R € R"*" is an upper triangular ma-
trix. Then, we map both hidden states into Q to get the coordinate
matrices as follows:

Proj(hx) =hxQ, Proj(ha) =haQ, (10)
where Proj(hx), Proj(ha) € R? ", Thus we can obtain the homo-
geneous part hj, € R"™% a5 follows:

Proj(ha) = ¢ (Proj(hx) © Proj(ha)) © Proj(ha)., (1)
hj = Proj(ha)Q", (12)
where O is the element-wise product, ¢(-) is the indicator function,
which outputs 1 if the value is greater than 0, and 0 for the rest.

Since h; is homogeneous with hx, we can directly fusing it into
the item representation, Eq.3 can be updated:

hx = FusedAttention(X, Ay, -+ , A, P) + hpa*

CXA + CP

= Softmax ( XWy1+hp™ (13)

dp
Since the average sequence length of users is often lower than n,
we can reduce the dimension of hx ! as hx? W,, where W, € R™*",
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Table 1: Statistics of datasets.

Dataset  # Users #Items # Actions # Avg. len
Yelp 30450 20039 316541 10.4
ALEC 34148 18654 290490 8.5
Beauty 22364 12102 198502 8.9
Industrial 33061 19873 290000 8.8

to reduce the computational complexity as well as the redundancy
of parameters before doing QR decomposition.

3.4 Model Prediction and Learning

After L layers of Transformer structure, we get the final hidden
state h§( of the item ID, and calculate the prediction score as:

4 = Softmax(hk - V), (14)

where V € RIVI*4 js the candidate item matrix. For the sequential
recommendation task, we adopt the cross-entropy loss function as

N
__ 1 0o
Lce——ﬁ ;y logy’, (15)
where y? and 7' denote the ground truth and the predictive proba-
bility of the i-th sample. Finally, combining the contrastive loss in
RSA, we define the loss function with the balance coefficient A:

L=Lee+A-Leo
1 N

. A . —~ . —~
_ i =~ , i i i i
=-N 2 (y logy' + 5 E (Y OlogYx +Y @logYA)). (16)

4 OFFLINE EXPERIMENTS

In this section, offline experiments are designed to evaluate the
performance and effectiveness of ASIF.

4.1 Datasets and Settings

4.1.1 Dataset. We conduct experiments on three publicly available
datasets and an industrial dataset:

e Yelp! dataset is a well-known business recommendation
dataset. Category of business and position are regarded as
side information.

e Amazon Beauty? dataset is collected from Amazon review
datasets. Category of the goods and position information are
supplementary attributes.

e ALiEC3 is a Taobao display advertising dataset provided by
Alibaba. We utilize category and position as side information.

¢ Industrial dataset is collected from a scenario in the com-
mercial advertising system in Alipay, which is desensitized
and encrypted, and does not contain any Personal Identifi-
able Information (PII). The position and item’s entity such
as category and brand, are utilized as side information.

Uhttps://www.yelp.com/dataset
%http://jmcauley.ucsd.edu/data/amazon/
3https://tianchi.aliyun.com/dataset/56
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Table 2: Overall Performance (HR and NDCG) on public datasets. The best results are boldfaced, while the second-best results
are underlined. We pick the best model with the highest NDCG@20 on the validation set. Impr. (%) is the performance gain of

ASIF against the best baseline method.

Model Yelp AlEC Beauty
H@lo H@20 N@10 N@20 | He10 H@20 N@10 N@20 | H@l0o H@20 N@10 N@20
Bert4Rec 0.0354  0.0580 0.0189  0.0246 | 0.0503  0.0756  0.0263  0.0327 | 0.0542 0.0793  0.0315 0.0378
Caser 0.0357  0.0573  0.0177  0.0231 | 0.0336  0.0522 0.0171  0.0218 | 0.0416  0.0672  0.0211  0.0275
GRU4Rec 0.0350  0.0579  0.0175 0.0232 | 0.0361 0.0567 0.0182  0.0234 | 0.0510 0.0766  0.0268  0.0333
SASRec 0.0647  0.0936  0.0398  0.0471 | 0.0903 0.1300 0.0449 0.0549 | 0.0861 0.1225 0.0424 0.0516
LightSANs | 0.0658 0.0970 0.0402 0.0480 | 0.0942 0.1354 0.0470 0.0574 | 0.0871 0.1242 0.0441 0.0535
FMLP 0.0657  0.0935 0.0400 0.0470 | 0.0936 0.1346  0.0463  0.0566 | 0.0855 0.1190  0.0450  0.0534
GRU4Recp | 0.0362 0.0605 0.0182  0.0243 | 0.0471 0.0743 0.0237  0.0305 | 0.0532 0.0820 0.0274  0.0347
SASRecr 0.0467  0.0749  0.0249 0.0319 | 0.0719 0.1081 0.0383  0.0474 | 0.0776  0.1082  0.0447  0.0540
LightSANsg | 0.0641 0.0925 0.0390 0.0461 | 0.0944 0.1382 0.0469 0.0579 | 0.0880 0.1244 0.0448  0.0540
FMLPfp 0.0629  0.0884 0.0385 0.0448 | 0.0997 0.1431 0.0495 0.0604 | 0.0871 0.1220 0.0452  0.0540
CL4SRec 0.0666  0.0965 0.0390 0.0465 | 0.0922 0.1287 0.0464 0.0556 | 0.0825 0.1180  0.0437  0.0526
DuoRec 0.0667  0.0962  0.0407 0.0481 | 0.0863 0.1272  0.0432 0.0535 | 0.0878 0.1244 0.0451 0.0543
FDSA 0.0668  0.0966  0.0403  0.0478 | 0.0900 0.1327 0.0456  0.0563 | 0.0839  0.1209 0.0439  0.0532
NOVA 0.0670  0.0952  0.0407 0.0478 | 0.0951 0.1382  0.0467 0.0575 | 0.0866  0.1240  0.0441  0.0535
DIF-SR 0.0673 0.0988 0.0412 0.0491 | 0.0983 0.1419 0.0482 0.0592 | 0.0871 0.1234 0.0434  0.0526
ASIF 0.0768 0.1131 0.0452 0.0543 | 0.1131 0.1631 0.0574 0.0700 | 0.0922 0.1322 0.0453 0.0554
Impr. ‘ 14.12% 14.47% 9.71%  10.59% | 13.44% 13.98% 15.96% 15.89% ‘ 4.77% 6.27% 0.22% 2.03%

Table 3: Performance on the industrial dataset.

Industrial

Model
H@10 H@20 N@10 N@20
Bert4Rec | 0.0706 0.1187  0.0355 0.0476
Caser 0.0808 0.1315 0.0417  0.0544
GRU4Rec | 0.0322  0.0575 0.0190  0.0250
SASRec | 0.0942 0.1518 0.0480  0.0625
LightSANs | 0.0935 0.1556 0.0466  0.0622
FMLP 0.0939  0.1553  0.0454  0.0608
GRU4Recp | 0.0830 0.1364 0.0433  0.0567
SASRecr | 0.0877 0.1385 0.0463  0.0591
LightSANsp | 0.0889  0.1457  0.0454  0.0596
FMLPf 0.0863 0.1438  0.0420  0.0564
CL4SRec | 0.0683 0.1134  0.0342  0.0455
DuoRec | 0.0917 0.1475 0.0475 0.0615
FDSA 0.0913  0.1496  0.0479  0.0626
NOVA 0.0933  0.1517  0.0456  0.0602
DIF-SR 0.0951  0.1559  0.0459  0.0612
ASIF 0.0996 0.1653 0.0495 0.0660
Impr. | 473% 6.03% 3.13% 5.43%

Following the same data pre-processing ways in [7, 18, 24], we
remove all items and users that occur less than five times in public
datasets. For the industrial dataset, we retain all users and items
that have appeared due to the frequent updating of item IDs. The
statistics of all processed datasets are summarized in Tab. 1.
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4.1.2  Baseline Methods. We compare our model with the following
state-of-the-art sequential recommendation methods.

e Methods without side information. We take GRU-based
model GRU4Rec [6], self-attention-base model BERT4Rec [15],
SASRec [7], LightSANs [5], CNN-based model Caser [16]
and MLP-based model FMLP [25] as basic baselines.

¢ Naive early-fusion methods. GRU4Recf, SASRecp, Light-
SANsFE, FMLPF is the naive early-fusion variants of GRU4Rec,
SASRec, LightSANs and FMLP, which fuse IDs and side in-
formation together before feeding them into the networks.

e Advanced self-attention-based side information fusion
methods. We include the late-fusion method FDSA [22], the
hybrid-fusion methods NOVA [11] and DIF-SR [18], which
are highly related to our work. For a fair comparison, we
implement NOVA based on SASRec as in [18].

e Other relevant methods. CL4SRec [17] and DuoRec [12]
are SR models using contrastive learning objectives.

4.1.3  Evaluation Metrics. Following the previous works [7, 18],
the leave-one-out strategy is used for evaluation. For each user
sequence, we use the last item for testing, the second last item for
validation, and the rest items for training. Models are evaluated in a
full ranking manner as in [5, 11, 18] rather than negative sampling,
which is often criticized for bias [4, 9]. Two widely used metrics
are employed: top-K Hit Rate (HR@K) and top-K Normalized Dis-
counted Cumulative Gain (NDCG@K) with K={10, 20}.

4.1.4  Implementation Details. We run all the models on the open-
source recommendation framework Recbole [23] and evaluate them
with the same setting. We set the maximum sequence length to 50
and the embedding size to 256 for all datasets. All the networks
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are 3 layers and 4 heads, and the Adam optimizer is adopted for
200 epochs with batch size 2048 and learning rate le-4. Fusion
functions for side information fusion methods are searched among
sum, concat and gating. For other hyperparameters, we follow the
best setting mentioned in previous papers.

4.2 Performance Comparison

4.2.1 Overall Performance. Tab. 2 and Tab. 3 report the overall
performance of three public datasets and an industrial dataset. We
can make the following observations from four aspects: (1) In line
with intuition, some fusion methods perform better than those
use only IDs, revealing that side information can improve model’s
performance by capturing better sequence patterns. And this em-
phasizes the importance of side information fusion works. (2) On
the contrary, under the vanilla self-attention framework, SASRecp
considers more kinds of side information but brings a significant
decrease compared with SASRec on all datasets, indicating that
the information invasion does exist with self-attention-based naive
early-fusion methods. (3) NOVA and DIF-SR are carefully designed
to alleviate the invasion phenomenon, thus achieving better results
than SASRec. At the same time, we note that, due to its lack of
interaction caused by separating ID and feature into two channels,
the effect of FDSA is not significantly better than that of NOVA
and DIF-SR. (4) It is clear to see that ASIF achieves significantly
better results than other SOTA baseline methods on all datasets.
These results demonstrate the efficiency and validity of ASIF for
eliminating noisy interference and solving the information invasion
problem in side information fusion.

4.2.2  Ablation Study. We analyze the effectiveness of each compo-
nent of ASIF via an ablation study. Tab. 4 shows the performance
of ASIF and its ablation versions on three public datasets.

e w/o Representation Space Alignment (RSA). We disable
the contrastive loss to verify the effectiveness of RSA. The
significant decline implies that bringing the two spaces closer
appropriately can help alleviate the invasion phenomenon
and thus improve performance.

e w/o Homogeneous Information Extraction (HIE). With-
out the HIE component, attributes and position information
can only participate in the calculation of attention scores,
instead of directly being integrated into the hidden state of
item representation. In this case, metrics drop on all datasets.

e w/o Untied Positions (UP). This version removes the inde-
pendent position channel and treats position as a common
attribute. It can be observed that the interactions between
the position encoding and other terms increase the noise
and lead to a decrease in performance.

e w/o Fused Attention (FA). We decouple the correlation
calculation of IDs and attributes, i.e., each learns its own cor-
relation matrix. The results show a decrease in most metrics.
It means that it is necessary to retain the intersectionality
between IDs and attributes.

All four ablated versions of ASIF are significantly better than
SASRecF in Tab. 4. RSA and HIE are the most effective components
in ASIF, proving there is indeed valid information in side informa-
tion that should be carefully incorporated into item representation.
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Table 4: Ablation results (HR@20 and NDCG@20) on three
public datasets. Each row removes a single component from
the model except the last row.

Model Yelp ALEC Beauty
H@20 N@20 | H@20 N@20 | H@20 N@20
w/o RSA | 0.1075 0.0524 | 0.1558 0.0668 | 0.1292  0.0540
w/o HIE | 0.0996 0.0493 | 0.1439 0.0603 | 0.1255 0.0543
w/oUP | 0.1077 0.0522 | 0.1572 0.0673 | 0.1298  0.0550
w/oFA | 0.1108 0.0534 | 0.1601 0.0683 | 0.1317  0.0544
ASIF 0.1131 0.0543 | 0.1631 0.0700 | 0.1322 0.0554
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Figure 6: Influence of balance parameter A and number of
orthogonal bases r.
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4.2.3 Hyper-parameters Study. Influence of loss balance param-
eter A. We investigate the influence of hyper-parameter A which
controls the balance of prediction loss and the contrastive loss.
NDCG@20 is reported with A € {0.1,0.5,1, 5,10, 100} in Fig. 6 on
three datasets. For Beauty dataset, the performance is robust with
little variance across different A, while on both Yelp and ALEC
datasets, our ASIF achieves the best performance when A = 10.

Influence of number of orthogonal bases r. ASIF’s perfor-
mance with a varying number of bases r € {4, 8,12, 16, 20, 24} on
three public datasets is reported in Fig. 6, respectively. A bigger
number of bases usually means a finer granularity of decomposi-
tion. However, finer granularity does not always mean better. As
we can see, the optimal number of orthogonal bases for three public
datasets is around 16 to 24.

Impact of fusion function #. We compare the performance
of three different fusion functions: Sum, Concat, and Gate. Fig. 7
illustrates the results, showing that ASIF with all three fusion func-
tions outperforms the state-of-the-art baselines mentioned in the
paper. This highlights the robustness and superiority of ASIF.
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Figure 8: Visualization of attention correlations in ASIF.
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4.2.4 Case Study. To provide more discussions on ASIF’s inter-
pretability, we visualize the correlations of ASIF using the same
sample as SASRecr in Fig. 1. As shown in Fig. 8, the ID-to-ID, ID-
to-Attribute, and Attribute-to-Attribute correlations show a strong
pattern, indicating that ASIF has a better ability to capture associ-
ations among data after excluding noisy interference of position
encoding. Moreover, we visualize ASIF’s clustered embeddings on
the Yelp dataset in Fig. 9(b). Compared with DIF-SR’s in Fig. 9(a))
and SASRecp’s in Fig. 2(a), the representation spaces of IDs and
side information are closer after the alignment, and then the ho-
mogeneous part is basically aligned with ID representation after
Homogeneous Information Extraction.

5 ONLINE DEPLOYMENT

In the online advertising system, the Click-Through Rate (CTR)
prediction task is an important part, responsible for predicting the
probability of users clicking on candidate items. Xlight is a traffic
platform in the online app Alipay which provides advertisement
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Table 5: Online performance on membership scene in Alipay.

CPM  AUC
\+1.09% +1.86% +0.97%

exp_name ‘ #clk Time Cost (p99)

ASIF

+2ms

services for small program merchants and so on. To further verify
the effectiveness of the proposed model ASIF, we deploy it into
the advertising system shown in Fig. 10. In Alipay’s membership
scenario, most of the ads are real goods, which are sold to users
in the form of points with money. In order for ASIF to fully utilize
its superiority in side information fusion, we select the category
and brand of goods as side information for the items recommended
in the this scenario. For offline training, ASIF collects the recent
click samples in the past 7 days as the training dataset. For online
service, when a user visits the membership page, the system will
initiate a request for the user’s historical behavior from an online
feature service platform, which are truncated to a length of 50.
ASIF will estimate the pCTR for some of the ads retrieved from the
ads pool. In Xlight’s Real-Time Bidding and Ranking system, each
advertisement will be ranked based on its Effective Cost Per Mille
(eCPM), which is estimated based on the pCTR and bid. Therefore,
accurate estimation of CTR is pivotal for the Xlight platform.

Due to industrial constraints, it was not feasible to compare all
baseline models in the online system. Therefore, we selected SASRec
as the baseline model for comparison. After conducting two-week
online A/B test, our model improved clicks by 1.09% and delivered
a significant 1.86% increase in Cost Per Mille (CPM). Meanwhile, it
enhanced multi-day online AUC by 0.97% with additional negligible
computational cost (p99 latency 2ms). In conclusion, combined with
offline evaluation, ASIF demonstrates strong performance in real-
world industrial scenarios.

6 CONCLUSION

In this paper, we present a novel method ASIF for side informa-
tion fusion in Sequential Recommendation. Our method addresses
the challenges of noisy interference and information invasion in
the mixed embedding space. Specifically, we first introduce Fused
Attention with Untied Positions, which calculates position correla-
tions individually to avoid noisy interference in the mixed attention
scores. Secondly, we propose Representation Alignment, consist-
ing of RSA and HIE, to solve the information invasion problem.
RSA aligns the embedding spaces of IDs and attributes using the
contrastive objective to improve their semantic consistency at the
interaction level. HIE employs orthogonal decomposition to extract
the homogeneous part in attributes and then integrate it into item
representation, further enhancing the utilization of side informa-
tion. Through extensive experiments, we have demonstrated that
our proposed method surpasses previous approaches in side in-
formation fusion, and the visualization and ablation experiments
demonstrate its rationality. The online A/B test on Alipay’s adver-
tising system showed that ASIF obtains a 1.09% improvement on
clicks and 1.86% on CPM. In future research, we aim to further
improve the denoising techniques and explore automatic methods
to enhance the utilization for side information fusion.
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